

Final Report Functional Servicing and Stormwater Management Report (FSR/SWM)

17 Elm Street, City of Toronto

Prepared for Fora Developments by IBI Group IBI Group Project #137680 August 25, 2022

Document Control Page

CLIENT:	Fora Developments			
PROJECT NAME:	17 Elm Street			
REPORT TITLE:	Functional Servicing and Stormwater Management Report			
IBI REFERENCE:	IBI Group Project #137680			
VERSION:	1			
DIGITAL MASTER:	137680 Fora Developments_Civil Engineering Services_17 Elm Street_City of Toronto - Internal Documents\6.0_Technical\6.04_Civil\03_Tech- Reports\Revision 1			
ORIGINATOR:	Cassidy Goetz, Project Engineer, Land Engineering			
REVIEWER:	Neil Short, Director, Sr. Practice Lead, Land Engineering			
AUTHORIZATION:	Jason Jenkins, P.Eng., P.E., Associate Manager, Land Engineering			
CIRCULATION LIST:	Fora Developments			
HISTORY:	Identification Date Description of Issued and/or Revision			
	FSR/SWM August 2022 1st Submission			

AUTHORIZED FOR ISSUE BY: **IBI GROUP**

Jason Jenkins, P.Eng., P.E. Associate Manager Land Engineering

Table of Contents

1	Introduc	tion	1
	1.1	Background	1
	1.2	Existing Site Description	2
	1.3	Site Proposal	2
	1.4	Service Connections	2
2	Terms of	f Reference and Methodology	3
	2.1	Terms of Reference	3
	2.2	Methodology: Stormwater Management	3
	2.3	Methodology: Sanitary Discharge	4
	2.4	Methodology: Water Supply	4
3	Groundv	vater Discharge	5
	3.1	Groundwater Quality	5
	3.2	Short-Term Groundwater Discharge	5
	3.3	Long-Term Discharge Condition	5
4	Stormwa	ater Management	6
	4.1	Pre-Development Conditions	6
	4.2	Grading	6
	4.3	Allowable Release Rate	6
	4.4	Quantity Control	7
	4.5	Quality Control	7
	4.6	Water Balance	8
	4.7	Storm Service Connection	9
	4.8	Emergency Overflow	9
	4.9	Erosion and Sediment Control	9
5	Sanitary	Drainage System1	0
	5.1	Existing Site Flows 1	0
	5.2	Proposed Site Flows	0
	5.3	Summary of Sanitary Drainage System1	1
6	Water Su	upply System	2
	6.1	Existing Water Infrastructure1	2
	6.2	Domestic Water Supply Demands 1	2

7 Conclusions and Recommendations					
	6.5	Hydrant Coverage	. 14		
	6.4	Water Service Connection	. 14		
	6.3	Fire Supply Demands	. 13		

List of Tables

Table 2.1	Sanitary Design Parameters4
Table 2.2	Water Design Parameters
Table 3.1	Short-Term Groundwater Discharge Summary5
Table 3.2	Long-Term Stormwater Infiltration Summary
Table 4.1	Quantity Control Summary7
Table 4.2	TSS Performance
Table 4.3	Initial Abstraction
Table 5.2	Sanitary Service Performance
Table 6.1	Hydrant Response Curve
Table 6.2	Domestic Water Demands
Table 6.3	Fire Underwriters Survey Factors
Table 6.4	Fire Demand Calculations

List of Figures

FIG 1	Aerial Plan	Following Report
DAP-1	Pre-Development Storm Drainage Area	Appendix C
DAP-2	Post-Development Storm Drainage Area	Appendix C

Appendices

Appendix A	Background Information

- Appendix B Groundwater
- Appendix C Stormwater Analysis
- Appendix D Sanitary Analysis
- Appendix E Water Analysis

List of Drawings

- SG-01 Site Grading Plan
- SS-01 Site Servicing Plan
- EC-01 Erosion and Sediment Control Plan
- DD-01 Details and Notes

1 Introduction

1.1 Background

IBI Group Professional Services (Canada) Inc. (IBI Group) has been retained by For a Developments (the "Owner") to prepare a Functional Servicing Report to support the Zoning By-Law Amendment (ZBA) and a Site Plan Application (SPA) for a proposed mixed-use development located at 15-17 Elm Street (the "Subject Site"), in the City of Toronto (the "City"). The purpose of this report is to develop a municipal site servicing strategy (stormwater, sanitary discharge, and water supply), and to identify any potential constraints within the existing municipal infrastructure.

More specifically, the report will present the following:

- Calculate allowable and proposed runoff rates for the development;
- Evaluate suitable methods for attenuation and treatment of stormwater runoff;
- Develop on-site control measures and examine theoretical performance to satisfy the City's Wet Weather Flow Management Guidelines (WWFMG);
- Evaluate groundwater quantity and quality parameters from the hydrogeological report and develop a strategy to manage groundwater under both short- and long-term conditions to comply with the City of Toronto's Discharge By-Law criteria;
- Develop a Stormwater Management (SWM) plan that complies with the City's Wet Weather Flow Management Guidelines (WWFMG);
- Identify sanitary servicing opportunities and constraints and evaluate the capacity of the receiving municipal sewer; and,
- Identify water servicing opportunities and constraints, calculate the proposed domestic water and firefighting supply needs; and evaluate the capacity of the municipal infrastructure.

The following documents have been obtained from various sources:

- City of Toronto plan and profile drawings for Elm Street;
- City of Toronto Digital Map Owners Group (DMOG) mapping;
- Topographic Survey prepared by Barich Grenkie Surveyors Ltd., dated May 2022; and,
- Architectural plans and site statistics prepared by Partisans Architects.

1.2 Existing Site Description

Located in the City of Toronto at 15 and 17 Elm Street, the 793 m^2 (0.08 ha) subject site is bounded by a small laneway to the east and south, Elm Street to the north, and commercial buildings to the west. Please see **Figure 1** following the report for an aerial view of the site.

The site currently hosts an existing commercial building and an asphalt parking surface. The site is relatively flat with ground surface elevations ranging from 93.88 m to 94.20 m and is self-contained with no external drainage areas to consider.

The subject site is located within Basement Flooding Study Area (BFA) #42 which is currently in progress, therefore, the Environmental Assessment documentation and Infoworks model were not available at the time of this report.

1.3 Site Proposal

The proposed development includes the construction of a 32-storey mixed-use building. The existing buildings will be removed within the subject site. Two underground levels are also proposed which will contain parking, storage, and the utility rooms. Sample architectural drawings can be found in **Appendix A** for reference.

1.4 Service Connections

The City of Toronto requires individual service connections for each built form. As only one building is proposed, a single set of connections will be provided.

Furthermore, the Ontario Building Code (OBC) requires two fire service connections separated by an isolation value for any building above 84 m in height. As the proposed building will exceed this limit, two fire service connections is required. Specific site servicing details will be further discussed in subsequent sections.

2 Terms of Reference and Methodology

2.1 Terms of Reference

The terms of reference used for the scope of this report have been based on the City of Toronto Design Criteria for Sewers and Watermains, dated January 2021, and the City of Toronto Wet Weather Flow Management Guidelines, dated November 2006. The City's Sewer Capacity Assessment Guidelines (July 2021) were referenced to assess the capacity of the existing sanitary sewers.

2.2 Methodology: Stormwater Management

As the proposed development has a total site area less than 5.0 ha (Table 7, Section 2, WWFMG), the following SWM criteria shall apply:

Quantity Control

The allowable release rate to the municipal storm sewer system from the development site during a 2- year design storm event must not exceed the peak runoff rate from the site under pre-development conditions during the same storm event, or existing capacity of the receiving storm sewer, whichever is less.

A maximum runoff coefficient of 0.50 shall be used in calculating the pre-development peak runoff. An overland flow route (major system) shall be provided within the developed site to direct runoff in excess of the 100-year storm to an approved overland flow outlet.

Quality Control

Long-term average removal of 80% of the total suspended solids (TSS) on an annual loading basis must be achieved. TSS removal efficiency is to be based on 100% of the runoff leaving the site from all storm events that occurs in an average year.

Water Balance

As the proposed development aims to qualify for Tier 1 of the Toronto Green Standard (TGS), controls should be in place. The runoff resulting from a 5 mm rainfall event must be retained on-site for rainwater re-use, infiltration, and evapotranspiration.

2.3 Methodology: Sanitary Discharge

Pre- and post-development peak sewer flows will be calculated based on the following City design criteria:

Table 2.1 Salitary Design Farameters						
DES		POPULATION DENSITIES				
Residential Flow ICI Flow Infiltration Allowance Peaking Factor	ICI Flow250 L/c/dayInfiltration Allowance0.26 L/s/ha		1.4 people / unit 2.1 people / unit			
SANITARY SERVICE CONNECTION SIZING		3 Bedroom Units Retail Space	3.1 people / unit 1.1 people/100m ²			
Population Flow Infiltration Allowance Peaking Factor	nfiltration Allowance 0.26 L/s/ha		3.3 people/100m ²			

Table 2.1 Sanitary Design Parameters

Based on the calculated peak flows, the adequacy of the existing infrastructure to support the proposed development will be discussed.

2.4 Methodology: Water Supply

The domestic water usage will be calculated based on the following City of Toronto and Ontario Building Code design criteria:

Table 2.2Water Design Parameters

	PEAKING FACTORS			
AVERAGE DAIL	LAND USE	PEAK HOUR	MAX DAY	
Single Family	310 L/c/day	Residential	2.25	1.50
Multi-Unit	190 L/c/day	Commercial	1.20	1.10

Pressure and flow testing to determine the adequacy of the existing watermain to support the development with fire suppression in accordance with the Fire Underwriters Survey (FUS) Guidelines will be discussed in the subsequent sections.

3 Groundwater Discharge

3.1 Groundwater Quality

A hydrogeological assessment was carried out by Groundwater Environmental Management Services (GEMS), dated August 2022 to assess existing groundwater conditions. Per the hydrogeological assessment, observed levels of total manganese, TSS and total phosphorus exceed the City's threshold for discharge to storm sewer. These observed levels do not exceed the City's threshold for discharge to the sanitary or combined sewer. It is therefore recommended that all dewatering activities be discharged to the 900 mm combined sewer system without pre-treatment. Please see **Appendix B** for an excerpt copy of the hydrogeological assessment.

3.2 Short-Term Groundwater Discharge

The anticipated short-term groundwater discharge has been estimated by GEMS to be 28.1 m³/day (0.32 L/s). At the time of this report, a dewatering plan was not made available. It is therefore assumed that groundwater pumping will operate for 4 hours per day.

As the pre-development flow to the combined sewer exceeds the anticipated short-term pumping rate, it can be stated that there is sufficient capacity to support the dewatering rate, this will be further discussed in the subsequent sections. **Table 3.1** summarizes the recommendations for groundwater discharge during construction. It should be noted that a Permit to Take Water (PTTW) application must be submitted to the Ministry of the Environment, Conservation and Parks (MCEP) if dewatering rates exceed 50 m³/day.

BUILDING	AVERAGE	AVERAGE	HOURS OF	PEAK	CONNECTION	TREATMENT
	DISCHARGE	DISCHARGE	PUMPING	DISCHARGE	OUTLET	REQUIRED
17 Elm Street	28.1 m³/day	0.32 L/s	4 Hours	1.95 L/s	Combined	None

Table 3.1 Short-Term Groundwater Discharge Summary

3.3 Long-Term Discharge Condition

Per the City's Foundation Drainage Policy, groundwater infiltration will be discharged to the municipal system under post-development conditions. Per the hydrogeological assessment, it is anticipated that the proposed foundation of the building will be above the groundwater table.

As infiltrated stormwater can be considered clean, it will be collected via the weeping tile system which will direct the water to the stormwater management tank located on P1. The average infiltrated stormwater flow rate has been provided by GEMS as 4.3 m³/day. At the time of preparation of this report, no mechanical confirmation letter was available. It was therefore conservatively assumed that the pump would operate for 1 hour per day.

The additional flow has been accounted for in the Allowable Release Rate and Storage Volume calculations. Detailed calculations can be found in **Appendix C** for reference.

Table 3.2 Long-Term Stormwater Innitration Summary							
BUILDING	DAILY DISCHARGE	AVERAGE DISCHARGE	HOURS OF PUMPING	PEAK DISCHARGE	CONNECTION OUTLET	TREATMENT REQUIRED	
17 Elm Street	4.3 m³/day	0.05 L/s	1 Hour	1.19 L/s	SCSO	None	

Table 3.2 Long-Term Stormwater Infiltration Summary

4 Stormwater Management

4.1 Pre-Development Conditions

Local storm infrastructure consists of a 1200 mm storm and combined sewer overflow sewer within Elm Street, which conveys flows east and a 900 mm combined sewer within Elm Street which conveys flows east.

The site currently hosts an existing building and a surface asphalt parking lot resulting in a pre-development runoff coefficient greater than 0.50. As per WWFM Guidelines, the allowable release rate will be calculated using a pre-development runoff coefficient of 0.50.

4.2 Grading

Under pre-development conditions, no external drainage enters the site and all drainage within the site is conveyed to the adjacent rights-of-way.

The proposed grades will match current drainage patterns wherever feasible. Grades will be maintained along property lines to the extent practical. Emergency overland flow route in excess of a 100-year storm event will continue to be directed to the adjacent rights-of-way matching pre-development conditions.

4.3 Allowable Release Rate

Using the City's IDF data for a 2-year storm event and a time of concentration of 10 minutes, the allowable release rate for the site is calculated as follows:

$$Q_{\text{Allowable}} = \frac{(A \times R) * I_2}{360} = \frac{(0.0793 \text{ ha} \times 0.50) \times 88.2 \text{ mm / hr}}{360} \times \left(\frac{1000 \text{ L}}{\text{m}^3}\right) = 9.7 \text{ L/s}$$

As shown above, the release rate from the subject site shall be limited to a maximum of **9.7** L/s. The associated pre-development drainage area plan is shown on **Figure DAP-1** which can be found in **Appendix C** for reference.

4.4 Quantity Control

The post-development release rate for the subject site shall be limited to the 2-year target flow which has been calculated to be **9.7 L/s**. To attenuate flows, the subject site will require a stormwater management tank and an orifice control. Setting the 100-year storage depth at 0.62 m and utilizing a 75 mm orifice plate, the orifice discharge is calculated as follows:

$$Q_{\text{Orifice}} = (0.63) * \frac{\pi * (0.073)^2}{4} * \sqrt{2 * 9.81 * (0.62 - 0.075/2)} \times \frac{1000 \text{ L}}{1 \text{ m}^3} = 9.4 \text{ L/s}$$

The following a summary of the stormwater management parameters pertaining to quantity control:

ORIFICE DIA. (mm)	ORIFICE TYPE	COEFF. OF DISCHARGE (k)	DEPTH (m)	HEAD (m)	ORIFICE DISCHARGE (L/s)	UNCONTROL. FLOW (L/S)	ALLOWABLE SITE DISCHARGE (L/s)
75	Plate	0.63	0.62	0.59	9.4	0.0	9.7

 Table 4.1
 Quantity Control Summary

The total site discharge is calculated to be less than the allowable release rate. By providing on-site storage and an orifice control, the City's objectives for quantity control have been met. Please see detailed calculations which can be found in **Appendix C**.

It should be noted that regular inspection and maintenance of any storage element and orifice control should be conducted on a regular basis to ensure that the system is functioning as designed.

4.5 Quality Control

As previously mentioned, 80% TSS removal is required in order to meet the City's WWFMG's. Based on the proposed site conditions and surface treatment, the following table summarizes the inferred TSS removal rate of the site:

SURFACE TYPE	AREA (m²)	EFFECTIVE TSS REMOVAL	OVERALL TSS REMOVAL
Conv. Roof	650	80	65.6
Extensive Green Roof	0	80	0.0
Intensive Green Roof	90	80	9.1
Landscape	0	80	0.0
Pavers	0	80	0.0
Impervious (Clean)	53	80	5.3
TOTAL	793		80.0

Table 4.2 TSS Performance

As the drive aisle is covered by upper floors, there are no "dirty" areas within the site. As such, the City requirements for quality control (i.e. minimum 80% TSS removal) have been satisfied.

4.6 Water Balance

As required by the City's TGS Tier 1, a rainfall depth of 5 mm must be retained over the entire area of development, and the landscape plan should include one of the alternatives allowed by the Tier 1 TGS. The water balance volume required to be detained is calculated as follows:

Vol. _{5 mm} = 793 m² * 5 mm *
$$\left(\frac{1 \text{ m}}{1000 \text{ mm}}\right)$$
 = **4.0 m³**

To achieve the required volume, a combination of initial abstraction, and water re-use will be incorporated. Based on initial abstraction values for each surface type, the total abstraction is calculated as follows:

AREA	AREA (m ²)	INITIAL ABSTRACTION	TOTAL (m³)
Conv. Roof	650	1	0.7
Extensive Green Roof	0	5	0.0
Intensive Green Roof	90	7	0.6
Landscape	0	5	0.0
Pavers	0	5	0.0
Impervious	53	1	0.1
TOTAL	793		1.3

Table 4.3Initial Abstraction

As shown above, 1.3 m^3 is retained on-site through initial abstraction. It has been identified that 1.1 m^3 of stormwater can be reused in 72 hours for irrigation purposes. The balance of 1.6 m^3 will be retained through water re-use methods such as additional landscape irrigation and / or toilet flushing the details of which will be provided with a subsequent submission.

An adequate sump within the stormwater management tank will be provided within the P1 level to retain the total water re-use volume. Please see **Appendix C** for the detailed design sheet and detailed **Drawing SS-01**.

4.7 Storm Service Connection

It is proposed that a new 200 mm storm service at a 2.0% slope be installed from a new control manhole at the property line to the existing 1200 mm SCSO sewer within Elm Street. The following table illustrates the peak flow and corresponding capacity of the service:

FROM	то	PIPE SIZE (mm)	PIPE SLOPE	PEAK FLOW (L/s)	CAPACITY (L/s)	PERCENT OF FULL FLOW
Cntrl.MH	Storm Sewer	200	2.0 %	9.5	46.4	20 %

Table 4.4 Storm Service Performance

As shown above, the proposed storm service and existing storm service connection can easily convey the controlled discharge while operating at 20% (or less) of full flow capacity. Please refer to the detailed design calculations which can be found in **Appendix C**, and the design **Drawing SS-01**.

4.8 Emergency Overflow

It is recommended that rooftop scuppers be installed to ensure emergency overflow from roof areas should rooftop drains become plugged. All areas at grade level have been designed with positive drainage (away from the building). The stormwater management tank shall be designed with a catchbasin lid (open grate) to allow storm flows to spill to the adjacent municipal right-of-way in an emergency situation. Maximum ponding within the development site shall not exceed City requirements of 0.30 m.

4.9 Erosion and Sediment Control

It is recommended that a sediment control fence per T-219.130-1 be installed along the perimeter of the site as required during demolition activities. All existing and proposed catch basins within close proximity of the subject site shall be protected with a geotextile fabric. A mud mat shall be installed as required to minimize distribution of mud into the public realm.

5 Sanitary Drainage System

5.1 Existing Site Flows

Per the City's record information, local sewer infrastructure consists of a 900 mm combined sewer flowing east on Elm Street. As such, MECP F-5-5 will be applied to the site.

Existing Sanitary Flows

The existing site hosts a retail/commercial building and an asphalt parking surface. The resulting pre-development population is 9. The existing peak sanitary flow is calculated as follows:

$$Q_{Pre-Dev.} = \left(\frac{250 \text{ L/c} \cdot 4 \cdot 9 \text{ pers}}{86400 \text{ s / day}}\right) + (0.26 \text{ L/s} \cdot ha \cdot 0.0793 \text{ ha}) = 0.05 \text{ L/s}$$

Existing Stormwater Flows

The existing site conveys stormwater to the combined sewer on Elm Street with no controls in place. Per Section 4, the existing stormwater flow to the combined sewer is **9.7 L/s** under a 2-year rainfall event.

5.2 Proposed Site Flows

The proposed sanitary servicing connection is proposed to connect to the 900 mm combined sewer on Elm Street while the proposed storm servicing connection is proposed to connect to the 1200 mm SCSO sewer on Elm Street.

Proposed Sanitary Flows

The anticipated sanitary discharge flows for the proposed site were calculated based on the site statistics provided by Partisans along with the design criteria outlined in **Section 2.3**. The proposed site statistics can be found in **Appendix B**. The population calculations are shown in **Table 5.1**.

	UNITS	DENSITY	POPULATION
1 Bedroom	100	1.4 pp/unit	140
2 Bedroom	51	2.1 pp/unit	107
3 Bedroom	23	3.1 pp/unit	71
Commercial	212	1.1 pp/100m2	2
	321		

 Table 5.1
 Proposed Development Site Populations

The corresponding post-development sanitary sewer flow is calculated as follows:

$$Q_{\text{Post-Dev.}} = \left(\frac{240 \text{ L/c} \cdot d \cdot 319 \text{ pers} \cdot 4.1}{86400 \text{ s} / \text{ day}}\right) + \left(\frac{250 \text{ L/c} \cdot d \cdot 2 \text{ pers}}{86400 \text{ s} / \text{ day}}\right) + (0.26 \text{ L/s} \cdot \text{ha} \cdot 0.08 \text{ ha}) = 3.6 \text{ L/s}$$

Proposed Stormwater Flows

The proposed site will convey stormwater to the SCSO sewer on Elm Street with controls in place.

Sanitary Service Connection

It is proposed that a new sanitary service at a 2.0% slope be installed from the new control manhole to the existing 900 mm combined sewer on Elm Street. Using the design flow of 450 L/cd, the corresponding post-development sanitary sewer flow is calculated as follows:

$$Q_{\text{Post-Dev.}} = \left(\frac{450 \text{ L/c} \cdot \text{d} \cdot 321 \text{ pers} \cdot 4.1}{86400 \text{ s} / \text{ day}}\right) + (0.26 \text{ L/s} \cdot \text{ha} \cdot 0.08 \text{ ha}) = 6.8 \text{ L/s}$$

The following table summarizes the peak flow and corresponding capacity of each service:

 Table 5.1
 Sanitary Service Performance

FROM	то	PIPE SIZE (mm)	PIPE SLOPE	PEAK FLOW (L/s)	CAPACITY (L/s)	PERCENT OF FULL FLOW
Cntrl.MH	Combined Sewer	200	2.0 %	6.8	48.4	14 %

As shown above, the sanitary service has ample capacity to convey the post-development peak sanitary flow while operating at 14% of full flow capacity. Please see the detailed design sheet which can be found in **Appendix D** and **Drawing SS-01**.

5.3 Summary of Sanitary Drainage System

As per MECP F-5-5, the proposed development must demonstrate that it will not contribute to an increase in combined sewer overflow volume to the natural system under wet weather conditions. **Table 5.3** below, summarizes the flows from the development site to the combined sewer on Elm Street between existing and proposed conditions.

Table 5.3 Total Flow to Combined Sew

Condition	Sanitary Flow (L/s)	Storm Flow (L/s)	Groundwater Flow (L/s)	Total (L/s)
Existing	0.05	9.7	0	10.2
Proposed	3.6	0.0	0	3.6
	+3.5	-9.7	0	-6.6

As the proposed development represents an overall decrease the flows to the combined sewer under 2-year rainfall conditions, it can be stated that the existing sewer has the capacity to support the development. It can also be stated, due to the net decrease in flow to the combined sewer, that the site is compliant with MECP F-5-5.

6 Water Supply System

6.1 Existing Water Infrastructure

Per the City's record information, local water infrastructure consists of a 150 mm watermain within Elm Street. Hydrant flow testing was performed at existing fire hydrants along Elm Street in order to confirm the available water supply's flow-pressure response curve. These tests were performed on July 20, 2022 and were conducted in accordance with NFPA 291. The results are summarized as follows:

ELM STREET						
FLOW (gpm)	FLOW (L/s)	PRESSURE (psi)	PRESSURE (kPa)			
0	0	61	421			
375	23.7	36	248			
0	0	32	221			

Table 6.1Hydrant Response Curve

As shown above, static pressure within the system is expected to be approximately 61 psi. A copy of the hydrant flow test can be found in **Appendix E** for reference.

Under existing conditions, the municipal water supply network cannot support the proposed development under fire flow conditions. Therefore, it is proposed that the existing 150mm watermain within Elm Street (installed 1876) be replaced with a 300mm watermain between Yonge Street and Bay Street.

Further discussions with the City will be conducted in order to determine a preferable solution.

6.2 Domestic Water Supply Demands

Using the criteria set in **Section 2.4** and the site statistics provided by the architect, the Average Day Demand (ADD), Peak Hour Demand (PHD), and Max Day Demand (MDD) have been calculated, and are summarized as follows:

BUILDING	POPULATION	ADD (L/s)	PHD (L/s)	MDD (L/s)
1 Bedroom	140	0.3	0.8	0.4
2 Bedroom	107	0.2	0.6	0.3
3 Bedroom	71	0.2	0.4	0.2
Retail	2	0.0	0.0	0.0
TOTAL	321	0.7	1.8	0.9

The domestic supply line for the building will be designed based on PHD while maintaining a minimum available pressure of 40 psi (275 kPa) at the face of the building. Please see **Appendix E** for the detailed calculations.

6.3 Fire Supply Demands

The recommended fire flow demand for the subject site has been calculated using the design criteria outlined in the Water Supply for Public Fire Protection Manual, 1999 by the Fire Underwriters Survey (FUS).

As the building will be constructed using fire resistive materials, the effective floor area is taken as the largest floor area plus 25 % of the two adjacent floors.

- Effective Floor Area = Largest Floor Area + 25% (two adjoining floors)
- Effective Floor Area = 1,134 m2 + 25% (1,134 m2 + 788 m²)
- Effective Floor Area = 1,615 m²

The corresponding floor area and FUS factors will be applied as follows:

Table 6.3 Fire Underwriters Survey Factors

CONSTRUCTION	BUILDING OCCUPANCY	SPRINKLER	PROXIMITY
COEFFICIENT		ADJUSTMENT	FACTOR
0.6 (resistive)	- 15 % (limited)	- 30 %	+ 75 %

Using the effective floor area for each building and the appropriate FUS factors, the required fire flow for each building is calculated as follows:

Table 6.4Fire Demand Calculations

FIRE FLOW (F) CALCULATION	APPLYING FUS FACTORS	ADJUSTED FIRE FLOW	TOTAL DEMAND (TD)
$F = 220 \cdot 0.6 \sqrt{Area}$	$F_1 = F \cdot 0.85 = 4,250 L/min$	Fire Flow = $F_1 - F_2 + F_3$	TD = FF + MDD
$F = 220 \cdot 0.6 \sqrt{1,615} m^2$	$F_2 = F_1 \cdot 0.30 = 1,275 \text{ L/min}$	FF= 6,000 L/min (rnd'd)	TD=100.0 L/s + 0.9L/s
F = 5,000 L/min (rnd'd)	$F_3 = F_1 \cdot 0.75 = 3,188 \text{ L/min}$	FF = 100.0 L/s	TD= 100.9 L/s

The fire supply line for the building will be designed based on Total Demand (Fire Flow + MDD) while maintaining a minimum available pressure of 20 psi (140 kPa) at the face of the building. Please see **Appendix E** for the detailed calculations.

6.4 Water Service Connection

To service the proposed development, a new 200 mm fire service shall be connected to the proposed 300 mm watermain within Elm Street with a tapping sleeve and valve. A separate 150 mm domestic service will tee off from the fire line within the municipal right-of-way. A new valve and box shall be installed at the property line for each incoming service, and all required water meters, backflow preventers, and double check valves shall be located inside a mechanical room within the proposed P1 level.

As previously mentioned, the OBC requires two fire services separated by an isolation valve to be installed for any building above 84 m. As the proposed building exceeds this threshold a secondary 200 mm fire line will be required and shall be connected to the proposed 300 mm watermain within Elm Street.

The National Fire Protection Association (NFPA) considers any building over 23 m in height to be classified as a high-rise building and thus requires a remotely located secondary siamese connection for each zone. Accordingly, a second siamese connection will be provided.

6.5 Hydrant Coverage

Existing municipal hydrants are located on the south side of Elm Street and provide the required 45 m of coverage for all proposed siamese connections to satisfy OBC requirements. Please see **Drawing SS-01** for the location of all existing and proposed water infrastructure.

7 Conclusions and Recommendations

Storm Sewer and Stormwater Management

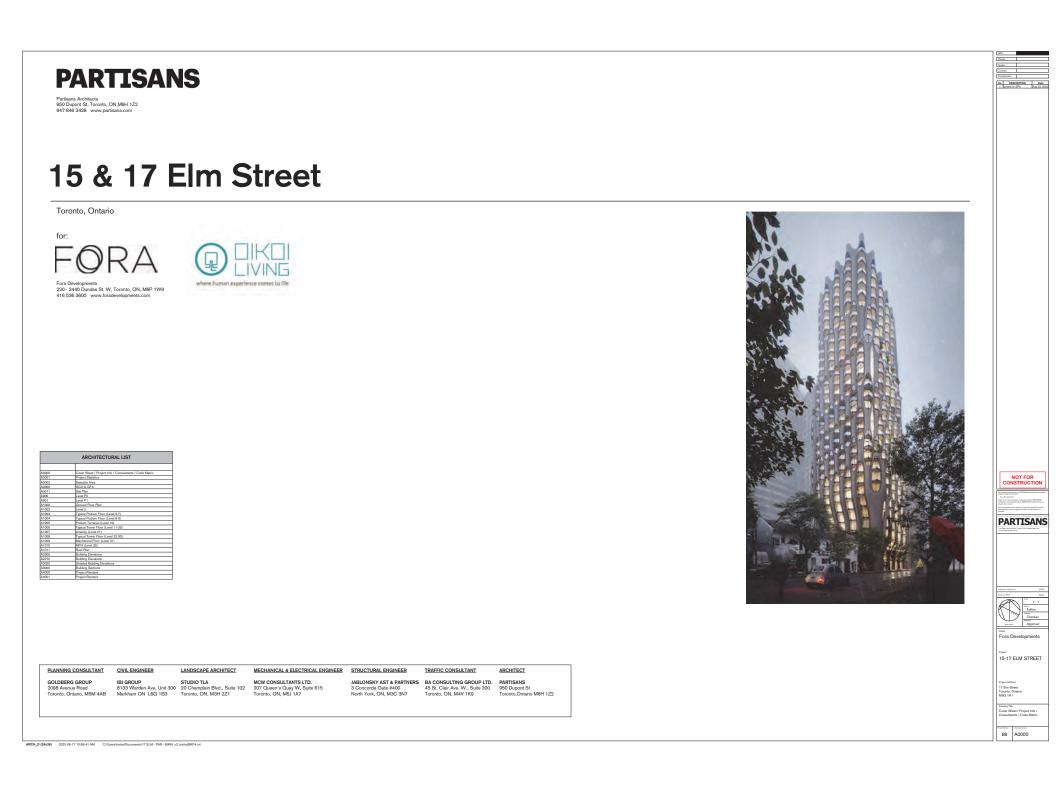
The objectives of the City's WWFMG's can be met by implementing on-site measures. Storm flows shall be attenuated on-site and released to the municipal storm sewer at an appropriate discharge rate thus meeting the City's target for quantity control. As there is no exposed drive aisle area to be considered "dirty", the site will meet the City's target for quality control. Through initial abstraction and water reuse, the site will meet the City's target for Tier 1 water balance. Details pertaining to water re-use applications will be finalized at a later stage.

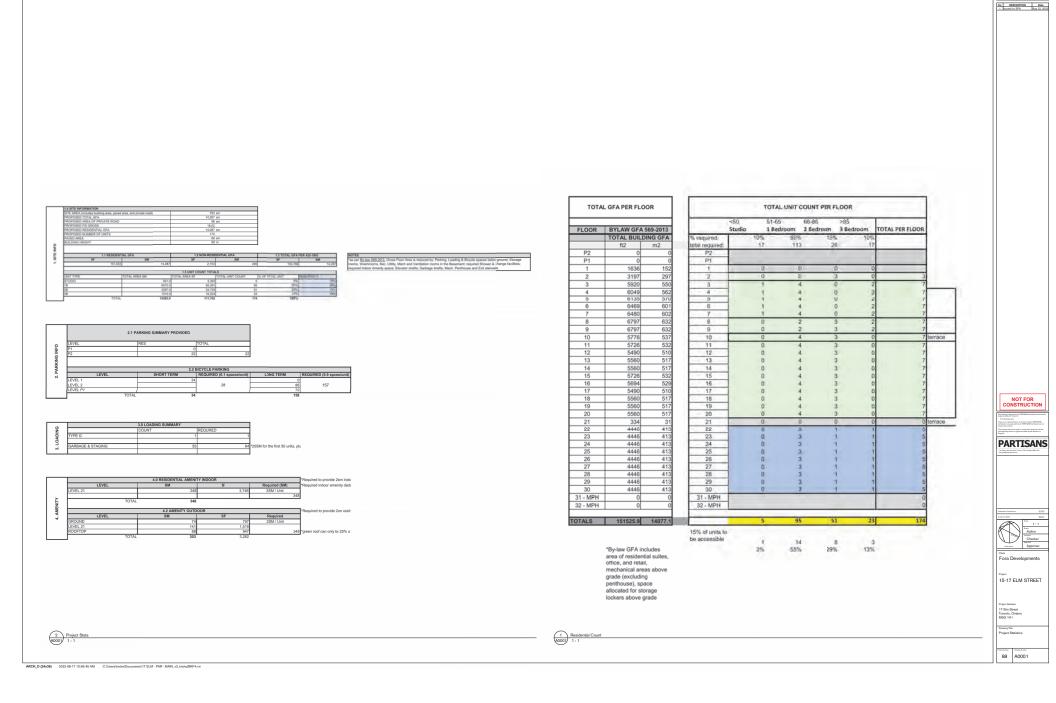
Sanitary Sewers

Through the implementation of the City's WWFMG's, there is an overall reduction in flows conveyed to the receiving combined sewer within Elm Street, thus the site complies with MECP procedure F-5-5. Furthermore, as the site represent an overall improvement to the receiving municipal sewer network, it can therefore be deemed an appropriate conclusion that the proposed development can proceed without upgrades to the municipal infrastructure.

Water Supply

The existing 150 mm watermain within Elm Street does not have sufficient pressure to support the proposed fire demands. It is therefore recommended that the 150 mm watermain be upsized to a 300 mm watermain between Yonge Street and Bay Street.




CLIENT FORA DEVELOPMENTS	PROJECT NAME 17 ELM STREET		IBI GROUP Unit 300 – 8133 Warden Avenue Markham ON L6G 1B3 Canada tel 905 763 2322 fax 905 763 9983 ibigroup.com			
2440 DUNDAS STREET WEST,	SCALE: NTS	DATE: 2022-08-19	FIGURE NAME	FIGURE NO.	REVISION	
Unit 200, TORONTO, ON M6P 1W9	PROJECT ENG:	DRAWN BY: CG				
	CHECKED BY:	APPROVED BY:		FIG.1	1	
	PROJECT NO: 137680	-				


1 in

Appendix A Background Information

Sample Architectural Drawings (Partisans) Plan and Profile Drawings (City of Toronto) DMOG Mapping (City of Toronto) Existing Building Plans Topographic Survey (KRCMAR)

No. DESCRIPTION Date 1 Datased for SPA Aug 22, 2022

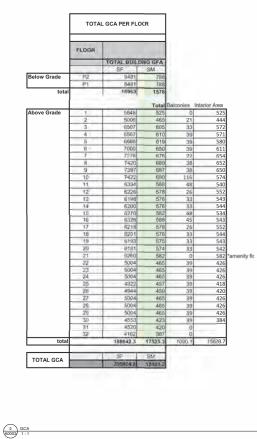
BOH, CIRC		N 569-2013 TOTAL NON- RESIDENTIAL		LOBBY , CIRCULATION, BOH		BALCONIES		SUITE AREA		TOTAL RESIDENTIAL		BYLAW GFA 569-2013	
ft2	m2	-		ft2	m2	fta	m2	12	m2	ft2	m2	ft2	m2
0	1112	0	0	108	10	0	0	0	0	108	10	108	1112
0		1711	159	0	0	0	0	0	0	0	0	1711	15
0		441	41	1636	152	0	0	0	0	1636	152	2077	19
	D	0	0	441	41	226	21	2530	235	3197	297	3197	29
0	0	0	0	409	38	355	33	5156	479	5920	550	5920	55
0	0	0	0	420	39	420	39	5210	484	6049	562	6049	56
0	C	0	0	409	38	420	39	5307	493	6135	570	6135	57
0	D	0	0	409	38	420	39	5640	524	6469	601	6489	60
0	D	0	0	409	38	237	22	5834	542	6480	602	6480	60
0		0	0	409	38	404	38	5985	556	6797	632	6797	63
0		0	0	409	38	404	38	5985	556	6797	632	6797	63
0		0	0	452	42	1244	116	4080	379	5776	537	5776	53
0	D	0	0	409	38	517	48	4801	446	5726	532	5726	53
0	C	0	0	409	38	280	26	4801	446	5490	510	5490	51
0	D	0	0	409	38	350	33	4801	446	\$560	517	5550	51
0		0	0	409	38	350	33	4801	446	\$560	517	5580	51
0		0	0		38	517	48	4801	446	5726	532	5726	53
0		0	0		38	484	45	4801	446	\$694	529	5694	52
0		0	0		38	280	26	4801	446	5490	510	5490	51
0		0	0	409	38	350	33	4801	446	\$560	517	5580	51
0		0	0		38	350	33	4801	446	5560	517	5580	51
0		0	0		38	350	33	4801	446	5560	517	5580	51
0		0	0		31	0	0	0	0	334	31	334	3
0		0	0		32	420	39	3681	342	4446	413	4446	41
0		0	0		32	420	39	3681	342	4446	413	4446	41
0		0	0		32	420	39	3681	342	4446 4446	413 413	4446 4446	41
0		0	0	344	32	420	39	3681 3681	342 342	4446	413	4446	41
0		0	0		32	420	39 39	3681	342	4446	413	4446	41
0		0	0		32	420	39	3681	342	4446	413	4446	41
0		0	0		32	420	39	3681	342	4446	413	4446	41
0		0	0		32	420	39	3681	342	4446	413	4446	41
0		0	0		32	420		3081	342	4440	413	4440	41
0		0	0	0	0	0	0	0	0	0	0	0	
			200.0	13035.2	1211.0	11733.8	1090.1		11786.0	151633.5	14087.1	153796.3	

No. DESCRIPTION Date 1 Second for SPA Aug 22, 2022

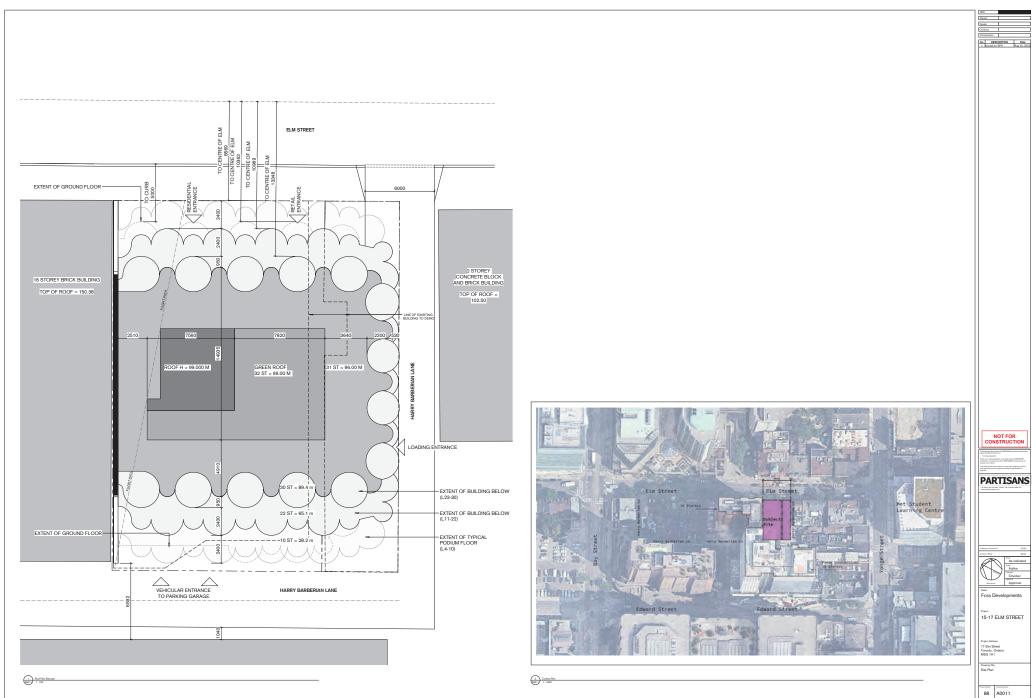
NOT FOR CONSTRUCTION

energie die property of Allentation Kontention and hein energie feitbereichen einen operanettellere of als land nach by NATSANA en sie operanettellere of als land nach by NATSANA en sie operanettellere of als land nach by NATSANA

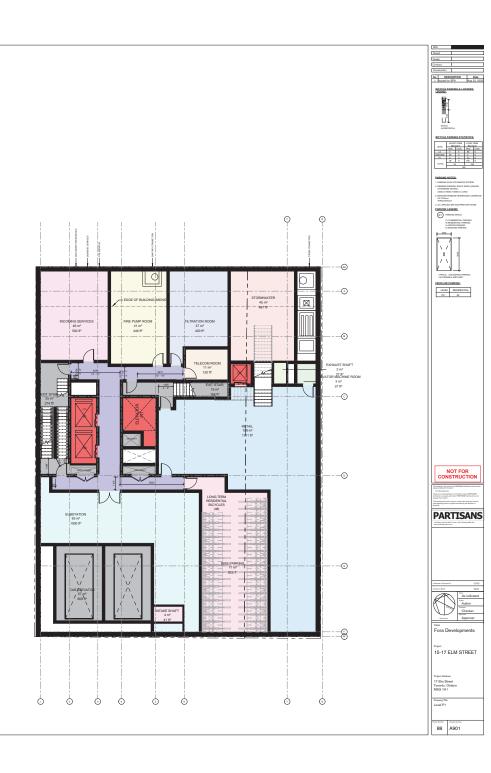
PARTISANS

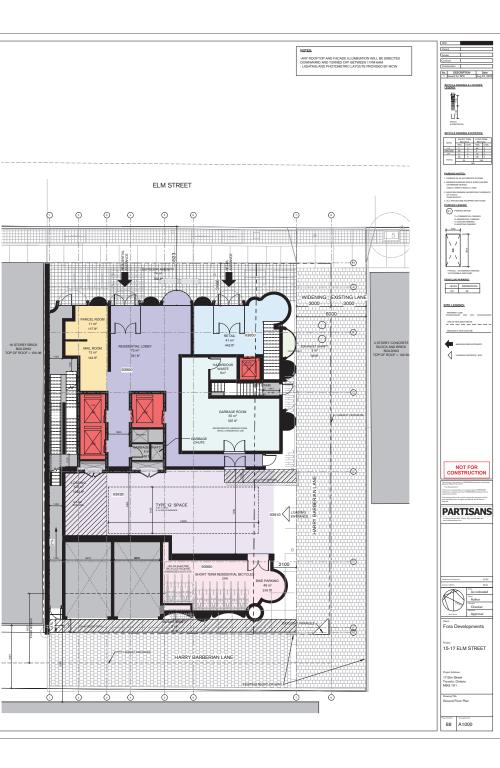

Author

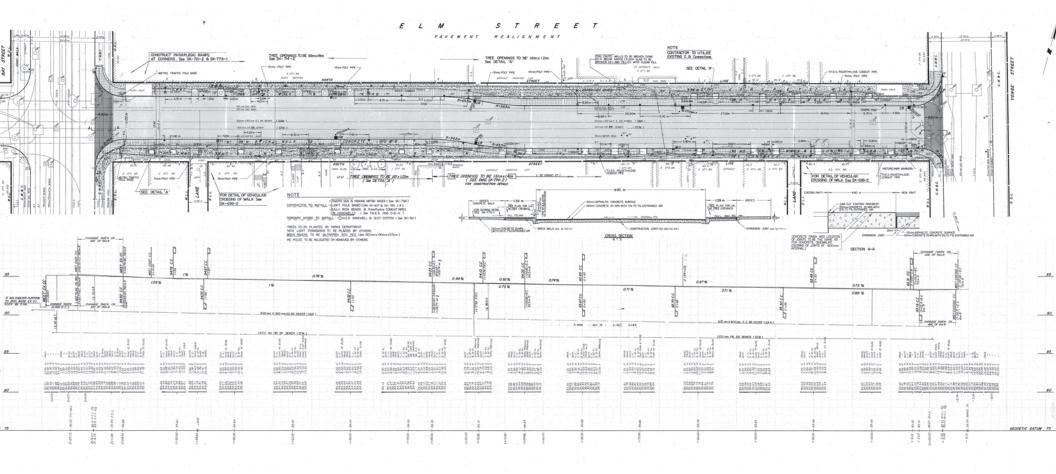
Fora Developments

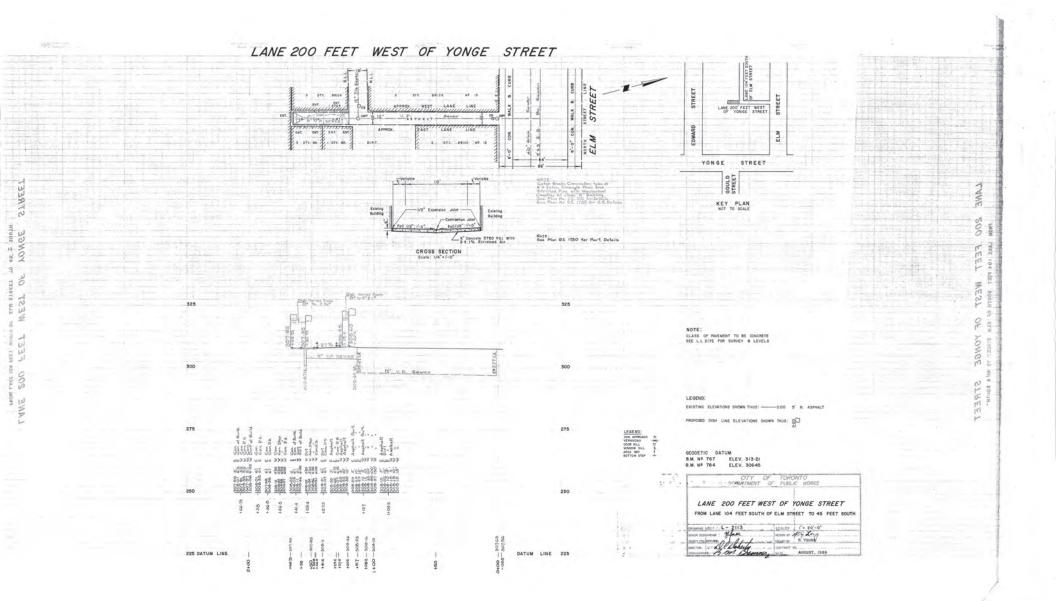

15-17 ELM STREET

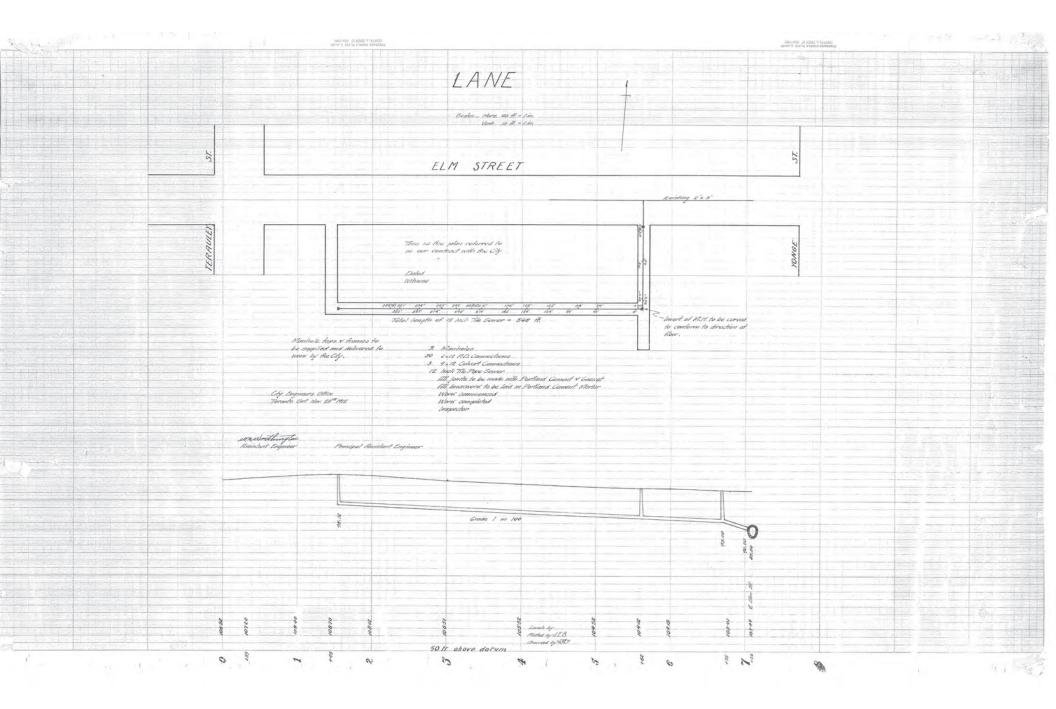
Project Addess 17 Elm Street Toronto, Ontario M5G 1H1 Duwing Tite GCA & GFA

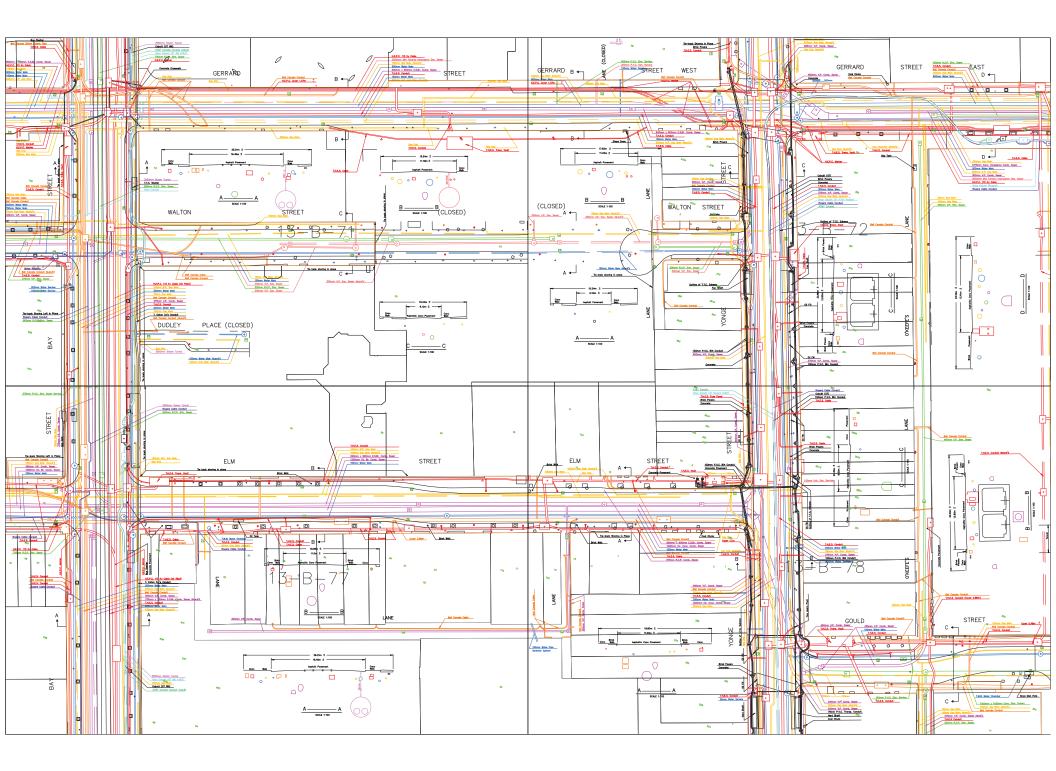

88 A0003

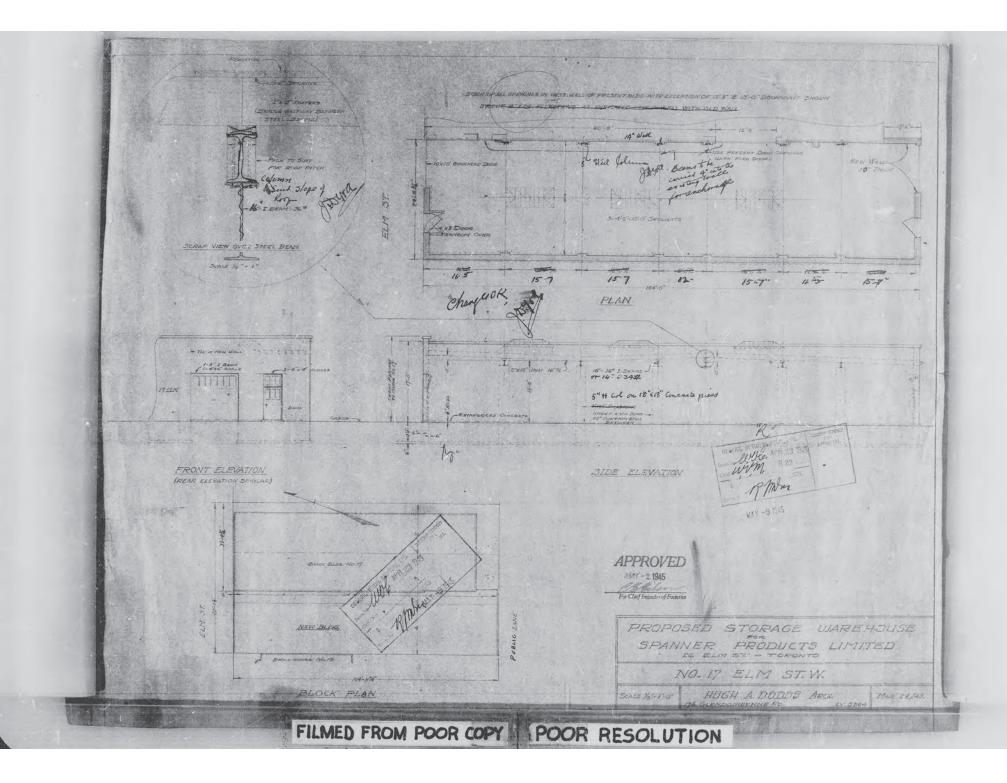


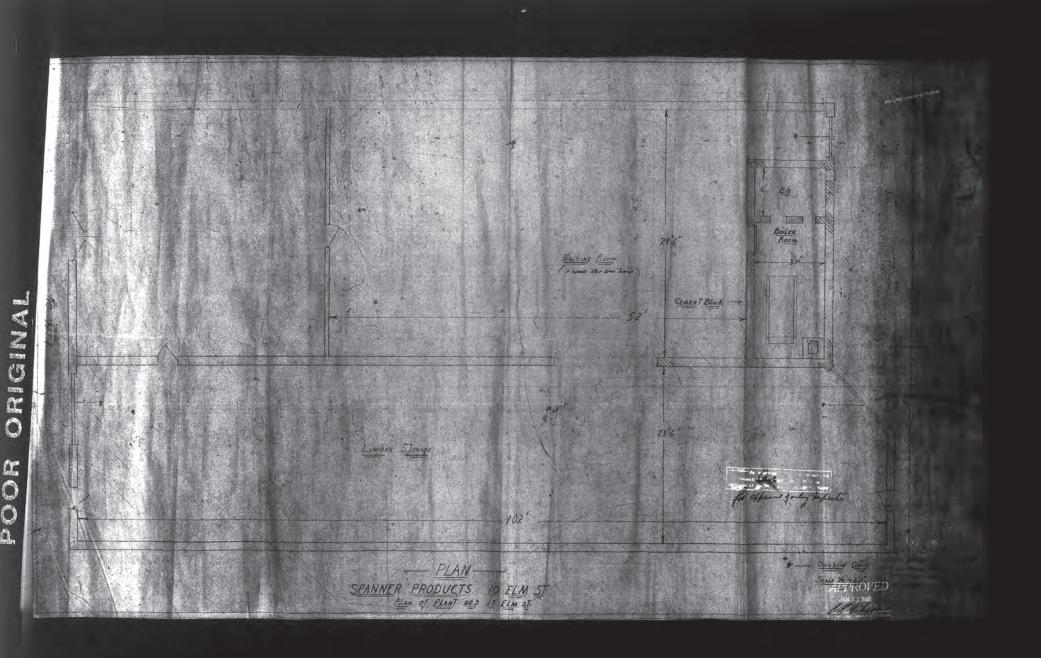


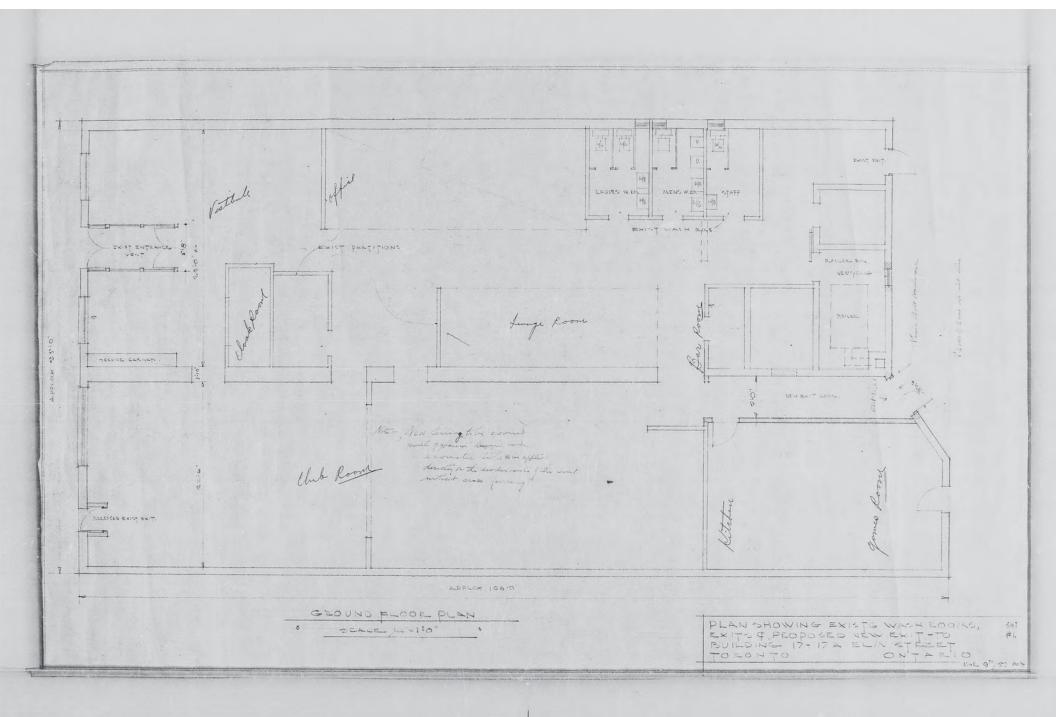



ARCH_D (24x36) 2022-08-17 11:00:01 AM C:\Users\trishs\Documents\17 ELM - PAR - MAIN_v2_trishsJBKF4.rvt



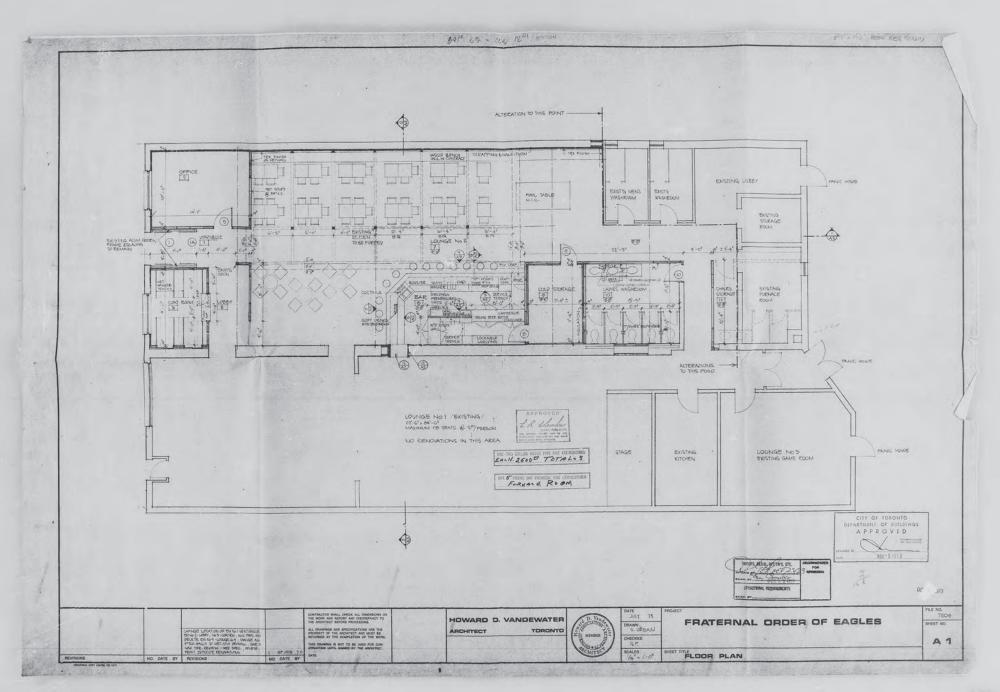


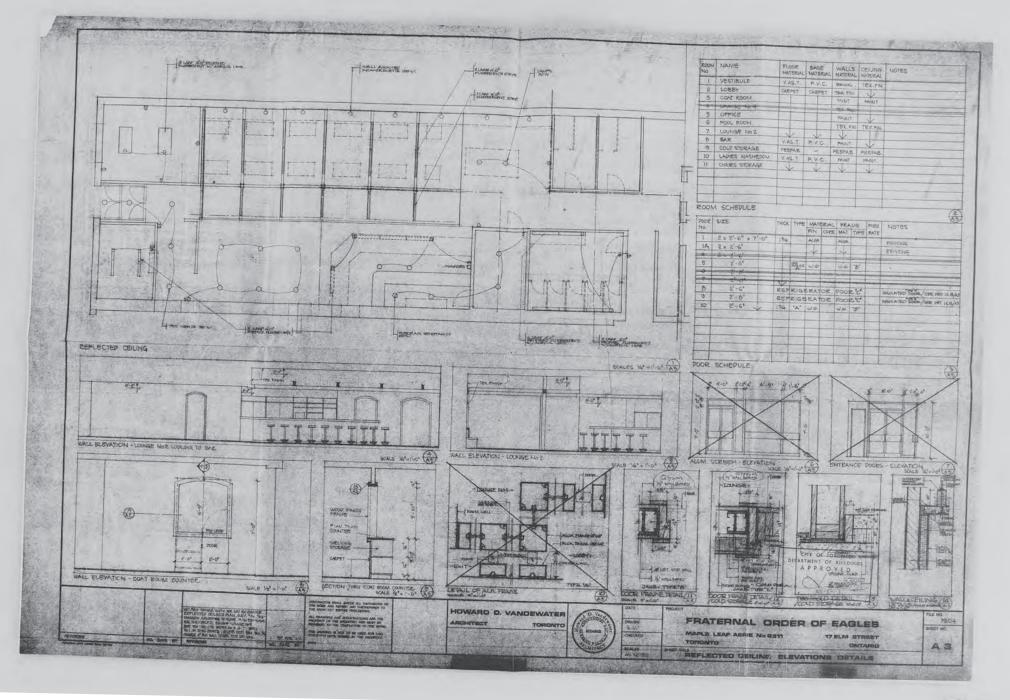


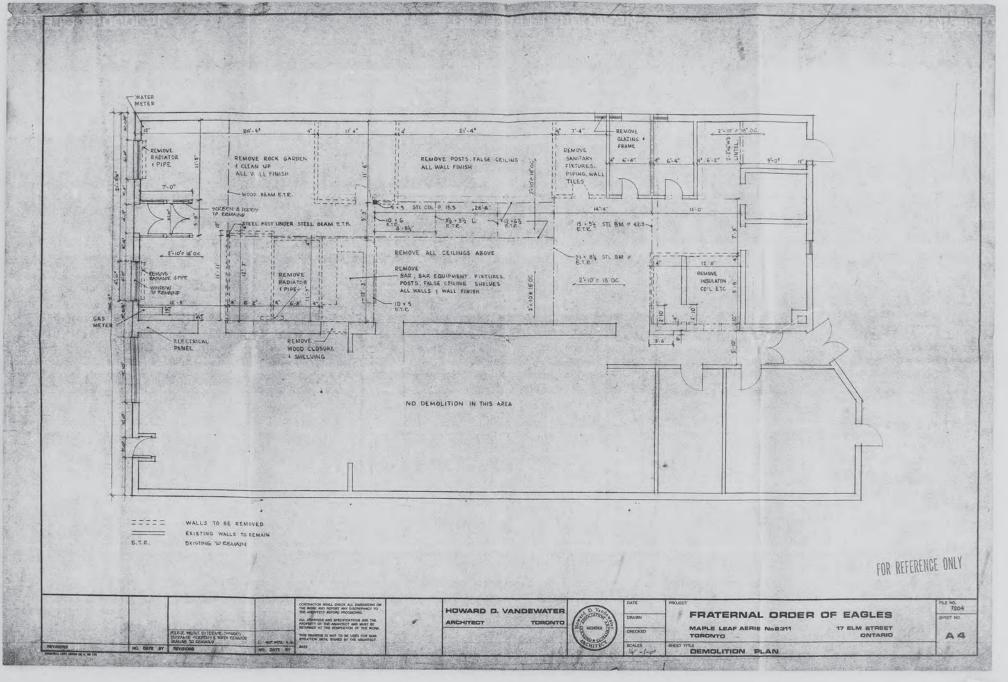


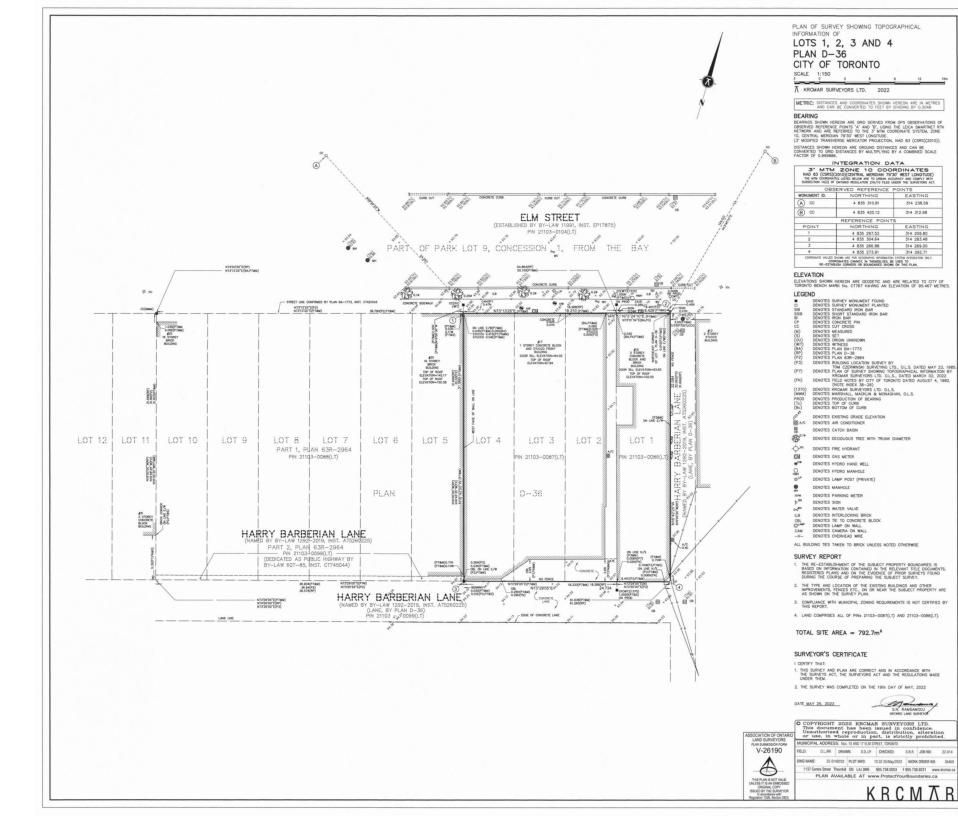
1 -F Machine Room . CEMENT BLock Chron Line and UNDER STORAGE 102 an alle Mend Doons *Pu PLAN-<u>— PLÂN</u> <u>SPANNER PRODUCTS</u> 10 ELM ST PLAN OF PLANT MOS IT ELM ST RH.So

POOR ORIGINAL


OR ORIGINAL




2AV.


2.

2.

2AV

Appendix B Groundwater

Excerpt Hydrogeological Assessment (GEMS) Groundwater Servicing Summary Form Groundwater Environmental Management Services

Hydrogeological Report

15 and 17 Elm Street Toronto, Ontario

> Project: 22-1422 August 12, 2022

> > **Prepared By:**

Groundwater Environmental Management Services Inc. 8800 Dufferin Street, Suite 303 Concord, ON, L4K 0C5

Prepared For: Fora Developments200 – 2440

Dundas St. W., Toronto, ON, M6P 1W9

Period	Monitoring Location	Monitoring Frequency	Method	Triggers for Mitigation	Mitigation Measures/Comments
During Construction	Discharge outlet pipe or sampling port of the dewatering system.	First sample is recommended to be obtained within first two (2) days of discharge start. Routine samples are recommended to be obtained monthly thereafter.	Samples should be sent to a certified laboratory and be analyzed against the City of Toronto sewer use By-Law.	Discharge quality exceeds City of Toronto sewer use By-Law.	Filtration/treatment approaches would be reviewed on a specific basis. Upon installation of a filtration/treatment system, an additional sample should be performed to ensure compliance with the criteria.
Post Construction	No post-construct	ion water quality moni	toring is required.		

Table 6.4.2: Groundwater Monitoring and Mitigation Plan, On-Site Water Quality Monitoring

Note: This Plan does not include Geotechnical Monitoring (settlement monitoring), which is not recommended for this site.

7.0 Conclusion

Based on the above analysis, the following conclusions and recommendations are offered for the proposed construction of 17 Elm Street, Toronto, Ontario:

- The geology within the Site is characterized by Beveled till plains, including coarse textured glaciolacustrine deposits overlaying Paleozoic bedrock.
 - The silty clay, sandy silt, fine sand, sandy clay, and shale/bedrock units at the Site are interpreted to all belong to the same unconfined water-bearing zone or aquifer.
- Hydraulic conductivity for the water-bearing zone (MW101, MW103 and MW104) ranges from 5.52 x 10⁻⁸ m/s to 1.71 x 10⁻⁶ m/s, with an overall geometric mean of 4.7 x 10⁻⁷ m/s.
- Groundwater table at the Site ranges from 80.53 masl to 86.13 masl.
 - The maximum anticipated groundwater is estimated at 86.9 masl, incorporating a 0.8 m fluctuation allowance to the peak static water level as outlined by the City of Toronto Foundation Drainage Guidelines (COT, 2021) for peak season monitoring.
- Groundwater quality at the Site currently meets the City of Toronto Sanitary and Combined Sewers Discharge Guidelines
 - Groundwater quality exceeds the City of Toronto Storm Sewer Discharge Use By-Law for Total Suspended Solids, Total Manganese (Mn), and Total Phosphorus
 - o It is recommended that an additional sample is obtained from the accumulated

stormwater on-site prior to discharge to determine if the water quality meets the City of Toronto Sewer Use By-law.

- To drawdown groundwater to a target elevation of 86.47 masl, a dewatering rate of 7.6 L/min or 10,882 L/day will be required.
 - Applying a safety factor of 1.5 for permitting applications and accounting for precipitation during dewatering, GEMS forecasts a total dewatering rate of 19.5 L/min or 28,053 L/day.
- The zone of influence for steady-state construction dewatering (40 days) is expected to extend 29 m beyond the excavation area.
- Long-term dewatering rates are expected to be minimal due to deep water level conditions and low hydraulic conductivity of site material. Long-term infiltrated stormwater is estimated at 4,275 L/day with a safety factor of 1.5
- Well decommissioning will be required prior to construction. Any inactive wells within the Site should be decommissioned by a licensed well contractor under Ontario Regulation 903.

8.0 Limitations

Groundwater Environmental Management Services Inc. (GEMS) has prepared this report for our client and its agents exclusively. GEMS accepts no responsibility for any damages that may be suffered by third parties as a result of decisions or actions based on this report.

The findings and conclusions are site-specific and were developed in a manner consistent with that level of care and skill normally exercised by environmental professionals currently practicing under similar conditions in the area. Changing assessment techniques, regulations, and site conditions mean that environmental investigations and their conclusions can quickly become dated, so this report is current up to two years from the published date. The report should not be used after that without GEMS review/approval.

The project has been conducted according to our instructions and work program. Additional conditions, and limitations on our liability are set forth in our work program/contract. No warranty, expressed or implied, is made.

SERVICING REPORT GROUNDWATER SUMMARY

The form is to be completed by the Professional that prepared the Servicing Report. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

		For City Staff Use Only:		
		Name of ECS Case Manager (please prin	it)	
		Date Review Summary provided to to TW		
A. SITE INFO	Included in SR (reference page number)	Report Includes this information City staff (Check)		
Date Servicing Report was prepared:		2022 August	Cover Page	
Title of Servicing Report:		17 Elm Street FSRSWM Report	Cover Page	
Name of Consulting Firm that prepared Servicing F	Report:	IBI Group Ltd.	Cover Page	
Site Address	15-17 Elm S Toronto, C		Cover Page	
Postal Code	M5G 1H1		N/A	
Property Owner (identified on planning request for comments memo)		Maple Leaf Aerie No. 2311, Fraternal Order of O Cooper, Annette; Cooper, David	N/A	
Proposed description of the project (ex. number of point towers, number of podiums, etc.)		xed use building sidential space bund levels	2	
Land Use (ex. commercial, residential, mixed, industrial, institutional) as defined by the Planning Act	Mixed		2	
Number of below grade levels	2		2	

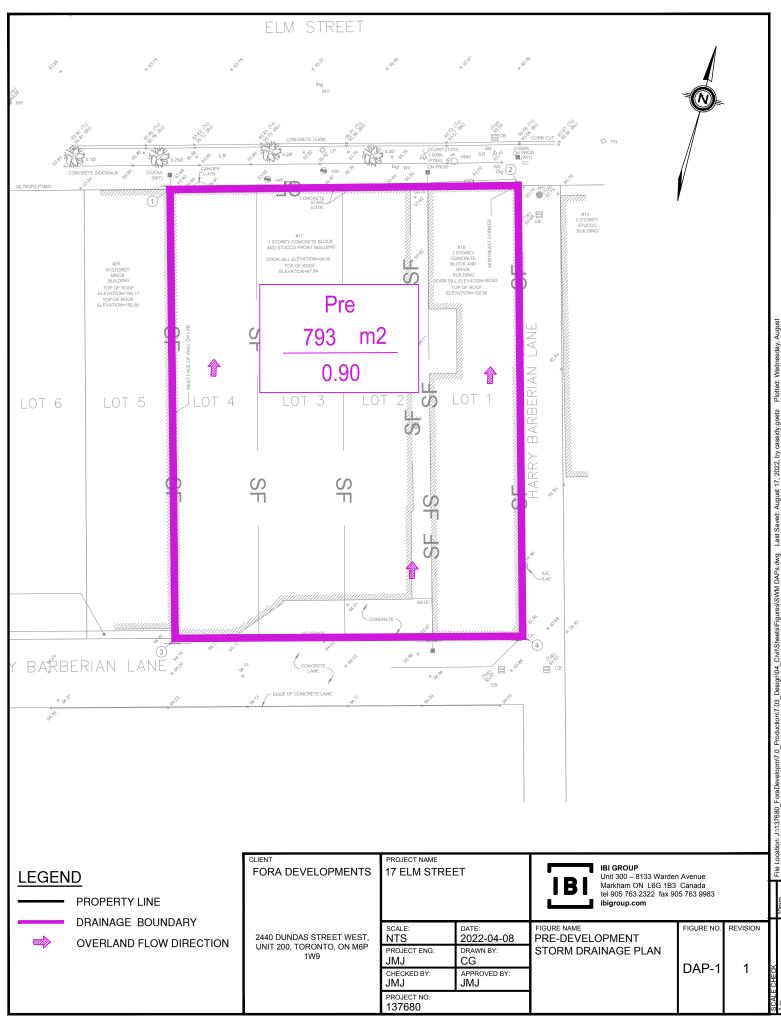
Does the SR include a private water drainage system (PWDS)?			
PWDS: Private Water Drainage System: A subsurface drainage system which may consist of but is not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection or drainage system for disposal in a municipal sewer.	If Yes continue completing Section B (Information Relating to Groundwater) <u>ONLY</u> If Yes, Number of PWDS? 0 (Each of these PWDS may require a separate Toronto Water agreement) If No skip to Sections C (On-site Groundwater Containment) and/or D (Water Tight Requirements) as applicable	YES● NO	
B. INFORMATION RELAT	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)

If there is more than one sump they must ALL be included in the letters along with a combined flow		
Is it proposed that the groundwater from the development site will be discharged to the	Sanitary Sewer	
sanitary, combined or storm sewer?	Combined Sewer	
	Storm Sewer	
Will the proposed PWDS discharge from the site go to the Western Beaches Tunnel (WBT)?	🗌 YES 🔲 NO	
Reference attached WBT drainage map	If Yes, private water discharge fees will apply and site requires a sanitary discharge agreement.	
What is the street name where the receiving sewer is located?		
What is the diameter of the receiving sewer?		
Is there capacity in the proposed local sewer system? • YES NO	Are there any improvements required to the sewer system? If yes, identify them below and refer to the section and page number of the FSR where this information can be found.	
	If a sewer upgrade is required, the owner is required to enter into an Agreement with the City to improve the infrastructure? YES	
Total allowable peak flow rate during a 100	L/sec	
year storm event (L/sec) to storm sewer		
When groundwater is to be discharged to the storm sewer the total groundwater and stormwater discharge shall not exceed the permissible peak flow rate during a 2 year pre development storm event, as per the City's		

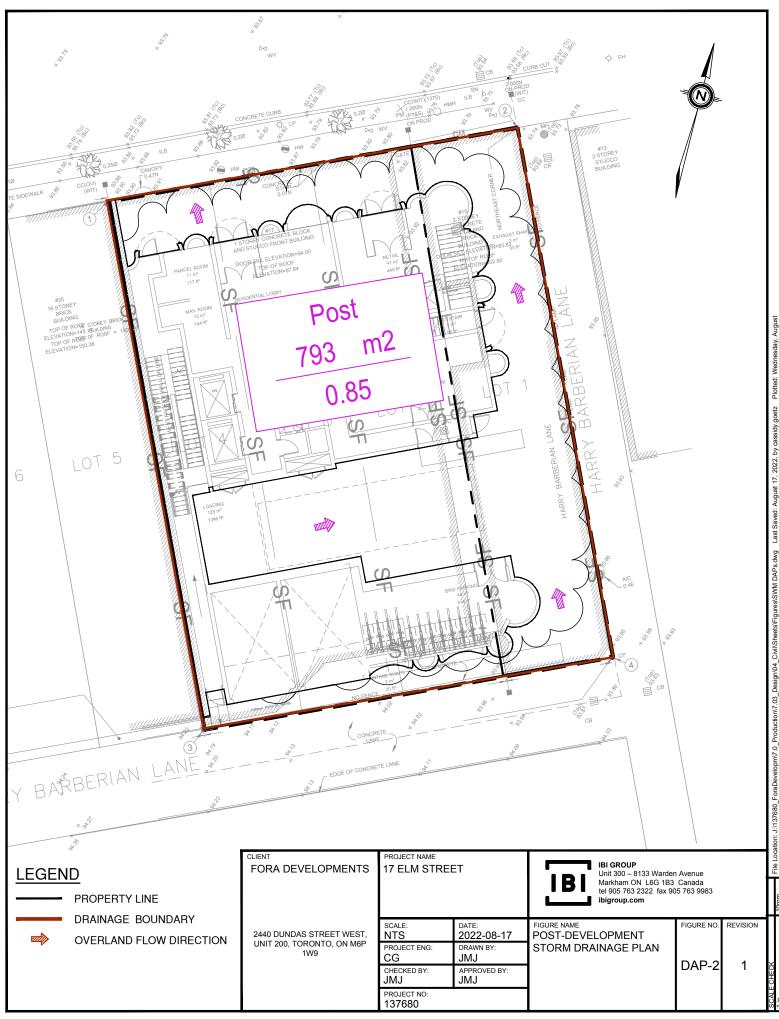
Wet Weather Flow Management Guidelines, dated 2006			
Short-Term Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak short- term groundwater flow rate	2.6_L/sec		
Long-Tem Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak long- term groundwater flow rate	0 L/sec		
Does the water quality meet the receiving sewer Bylaw limits? • YES NO	If the water quality does not meet the applicable receiving sewer Bylaw limits and the applicant is proposing a treatment system the applicant will need to include a letter stating that a treatment system will be installed and the details of the treatment system will be included in the private water discharge application that will be submitted to TW EM&P.		
C. ON-SITE GROU How is the site proposing to manage the		Included in SR (reference page number)	Report Includes this information City Staff (Check)
groundwater discharge on site?	No long term groundwater discharge is required	5	

Has the above proposal been approved by:	0	TW-WIM		
	And			
	0	TW-EM&P		
	And			
	\bigcirc	ECS		
If the site is proposing a groundwater infiltration gallery, has it been stated that the groundwater		YES		
infiltration gallery will not be connected to the municipal sewer? A connection between the infiltration gallery/dry		NO		
well and the municipal sewer is not permitted				
Please be advised if an infiltration gallery/dry well on site is not connected to the municipal sewer, the site <u>must</u> submit two letters using the templates in Schedule B and Schedule C.				
Confirm that the infiltration gallery can infiltrate 100% of the expected peak groundwater flow year round, ensure that the top of the infiltration trench is below the frost line (1.8m depth), not less than 5 m from the building foundation, bottom of the trench 1m above the seasonally high water table, and located so that the drainage is away from the building.	N/A			
D. WATER TIGHT	REQU	IREMENTS	Included in SR (reference page number)	Report Includes this information City Staff

SERVICING REPORT GROUNDWATER SUMMARY


		(Check)
If the site is proposing a water tight structure:	N/A	
1. The owner must submit a letter using the template in Schedule D.		
2. A Professional Engineer (Structural), licensed to practice in Ontario and qualified in the subject must submit a letter using the template in Schedule E.		

Provide a copy of the approved SR to Toronto Water Environmental Monitoring & Protection Unit at pwapplication@toronto.ca.


	Print Name	PROFESSIONA
Professional Engineer who completed the report summary:	Anthan	August 2022
	Signature	Date & Stamp

Appendix C Stormwater Analysis

Pre- and Post-Development Drainage Area Plans Stormwater Design Calculations Irrigation Calculations

esday, Plotted: Wedn File Location: J:137680_ForaDevelopml70_Production/7.03_Design04_CivilSheets/Figures/SWM DAPs.dwg Last Saved: August 17, 2022, by cassidy goetz 17, 2022 3:22:51 PM by Cassidy Goetz

Last Saved: August 17, 2022, by cassidy.goetz File Location: J:/137680_ForaDevelopmi7.0_Production/7.03_Design/0.4_Civil/Sheets/Figures/SVVM DAPs.dwg 17, 2022 3:22:52 PM by Cassidy Geetz

17 Elm Street

I B I

Г

Mixed Use Development

Runoff Coefficients

Project Name: 17 Elm Street Project Number: 137680 Date: 19 August 2022 Designed By: Jason Jenkins, P.Eng.

Total Site Area									
Conventional Roof	650	82.0%	0.90	0.74					
Extensive Green Roof	0	0.0%	0.50	0.00					
Intensive Green Roof	90	11.3%	0.50	0.06					
Landscape	0	0.0%	0.25	0.00					
Landscape over P1	0	0.0%	0.45	0.00					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious (Clean)	53	6.7%	0.90	0.06					
Impervious (Dirty)	0	0.0%	0.90	0.00					
Total Area	793	100%		0.85					

Pre Dev Total Site Area								
Conventional Roof	0	0.0%	0.90	0.00				
Green Roof	0	0.0%	0.50	0.00				
Landscape	0	0.0%	0.25	0.00				
Landscape over P1	0	0.0%	0.45	0.00				
Permeable Pavers	0	0.0%	0.55	0.00				
Impervious	793	100.0%	0.90	0.90				
Total Area	793	100%		0.90				

17 Elm Street														ALLOW	ABLE F	RELEAS	E RATE	AND ST	ORM SERVICE DESI
lixed Use Development																	2 / 100	-YEAR ST	ORM SEWER DESIGN SH
IBI				I _{2-year} =	21.8	= 88.19		1		59.7	= 250.3	0	1			Pr	oject Name:	17 Elm Stre	eet
IDI				1 2-year -	(T) ^{0.78}	- 00.13	9 11111/11		/ 100-year —	(T) ^{0.80}	- 250.5	2 11111/11				Proj	ect Number:	137680	
													-				Date:	19 August 2	2022
																C	esigned By:	Jason Jenk	ins, P.Eng.
	1			DI	ESIGN FL	OW CALC	JLATIONS	6					SEWER D	ESIGN &	ANALYSIS	3			
	From	То	А	R	AxR	Accum.	Tc	I	Q _{act}	Size of	Slope	Nominal	Full Flow	Actual	Length	Time in	Total	Percent of Full Flow	
	МН	MH	(ha)			AxR	(min)	(mm/hr)	(l/s)	Pipe (mm)	(%)	Capacity	Velocity	Velocity	(m)	Sect. (min	Time (min)		Notes
												Q_{cap} (L/s)	(m/s)	(m/s)					
ALLOWABLE RELEASE RATE					1					-		T	1	n	1				-
Allowable Release Rate (Total Site)			0.0793	0.50	0.040	0.040	10.0	88.2	9.7										
Incontrolled Flow			0.0000	0.90	0.000	0.000	10.0	88.2	0.0										
Controlled Allowable Release Rate									9.7										
100-YEAR FLOWS																			
Subject Site (Un-Attenuated)			0.0793	0.90	0.071	0.071	10.0	250.3	49.6										
ORIFICE AND SERVICE DESIGN				k	Orif.(mm)	Area (m2)	depth (m)	head (m)	Q (L/s)										
Drifice and Storm Service	Tank	Cntrl.MH		k=0.6	75	0.00442	0.61	0.58	9.4	200	2.00%	46.4	1.5	1.1	7.8	0.1	10.1	20%	
Storm Service	Cntrl MH	1200mm STM							9.4	200	2.00%	46.4	1.5	1.1	10.7	0.1	10.1	20%	

17 Elm Street

Mixed Use Development

Rational	Method .	. 100	Year	Storm

		I _{100-year} =		59.7 (0) ^{0.80}	= 250.32 mm/hr
Project Name:	17 Elm Street		,	Controlled Area =	0.0793
Project Number:	137680		Weig	hed Runoff Coefficient =	0.85
Date:	19 August 2022			Orifice Discharge (L/s) =	9.4
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-Infiltrated (L/s)	Q-stored (L/s)	Storage Volume (n
0	0.0	0.000	1.19	0.000	0.000
10	250.3	47.123	1.19	38.943	23.366
20	143.8	27.065	1.19	18.885	22.662
30	103.9	19.567	1.19	11.387	20.497
40	82.6	15.545	1.19	7.365	17.675
50	69.1	13.003	1.19	4.823	14.470
60	59.7	11.239	1.19	3.058	11.010
70	52.8	9.935	1.19	1.755	7.369
80	47.4	8.928	1.19	0.748	3.590
90	43.2	8.125	1.19	0.000	0.000
100	39.7	7.468	1.19	0.000	0.000
110	36.8	6.920	1.19	0.000	0.000
120	34.3	6.455	1.19	0.000	0.000
130	32.2	6.054	1.19	0.000	0.000
140	30.3	5.706	1.19	0.000	0.000
150	28.7	5.400	1.19	0.000	0.000
160	27.2	5.128	1.19	0.000	0.000
170	25.9	4.885	1.19	0.000	0.000
180	24.8	4.667	1.19	0.000	0.000
190	23.7	4.469	1.19	0.000	0.000
200	22.8	4.289	1.19	0.000	0.000
210	21.9	4.125	1.19	0.000	0.000
220	21.1	3.975	1.19	0.000	0.000
230	20.4	3.836	1.19	0.000	0.000
240	19.7	3.707	1.19	0.000	0.000
250	19.1	3.588	1.19	0.000	0.000
260 270	18.5	3.477 3.374	1.19	0.000 0.000	0.000
280	17.9 17.4	3.277	1.19 1.19	0.000	0.000 0.000
280	17.4 16.9	3.186	1.19	0.000	0.000
300	16.5	3.101	1.19	0.000	0.000
310	16.0	3.021	1.19	0.000	0.000
320	15.6	2.945	1.19	0.000	0.000
330	15.3	2.874	1.19	0.000	0.000
340	14.9	2.806	1.19	0.000	0.000
350	14.6	2.741	1.19	0.000	0.000
360	14.2	2.680	1.19	0.000	0.000

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

HGL Depth (m) =

152.0 0.6 75

23.4

Orifice Diameter (mm) =

B

Water Quality Calculations

Project Name: 17 Elm Street Project Number: 137680 Date: 19 August 2022 Designed By: Jason Jenkins, P.Eng.

TSS Removal (Un-Treated)

Surface	Area (m²)		Effective TSS Removal	Overall TSS Removal
Conventional Roof	650	82%	80	65.6
Extensive Green Roof	0	0%	80	0.0
Intensive Green Roof	90	11%	80	9.1
Landscape	0	0%	80	0.0
Landscape over P1	0	0%	80	0.0
Permeable Pavers	0	0%	80	0.0
Impervious (Clean)	53	7%	80	5.3
Impervious (Dirty)	0	0%	0	0.0
Total Area:	793	100%		80.0

Site Meets 80% TSS Removal

17 Elm Street

Mixed Use Development

IBI

Г

Water Balance Calculations

Project Name: 17 Elm Street Project Number: 137680 Date: 19 August 2022 Designed By: Jason Jenkins, P.Eng.

Total Volume to be Retained	
Required Water Balance (mm):	5.0
Recall Site Area (m²):	793
Total Water Balance to be Retained (m ³):	4.0

Volume Achieved Through Initial Abstraction												
Surface	Area (m ²)		I.A.	Vol. (m ³)								
Conventional Roof	650		1	0.7								
Extensive Green Roof	0		5	0.0								
Intensive Green Roof	90		7	0.6								
Landscape	0		5	0.0								
Landscape over P1	0		5	0.0								
Permeable Pavers	0		5	0.0								
Impervious (Clean)	53		1	0.1								
Impervious (Dirty)	0		1	0.0								
Total Area:	793			1.3								

Water Balance Summary	Vol. (m ³)
Recall Initial Abstraction (see above):	1.3
Water Re-Use (Irrigation):	1.1
Water Re-Use (Toilet Flushing):	1.6
Total Water Balance Achieved:	4.0

Site Meets City's Water Balance Criteria

Check Tank Capacity to Capture Re-Use Volume	
Area of SWM Tank (m ²):	38.0
Float Switch Operating Range (m):	0.07
Total Water Balance Achieved:	2.7

SWM Tank has sufficient capacity for Re-Use Volumes

PROJECT NUMBER	22-155	PROJECT NAME	17 Elm Street		TERRAPLAN LAI	NDSCAPE ARCHITEC	TS						
DATE	2022 07 28	COMPLETED BY	Gosia Farun										
CALCULATIONS FOR WA	TER COLLECTED vs	. WATER NEEDED											
GENERAL INFO		letric fficiency' section of the LEE v please note the below	D Canada-NC 2009 Doc	ument									
Species Factor (Ks)	Species Factor is dete	ermined as follows:				erage and High per pla gh=.7. Mixed .2, .5, .9.							
Density Factor (<i>Kd</i>)	Plant grouping:			Sparsely planted: Densely Planted:		s, 0.6 mixed, 0.6 turf, a s, 1.3 mixed, 1.0 turf, a							
Microclimate Factor (<i>Kmc</i>)	Plant grouping expos	sure to wind, heat, reflecte	d light:	NE / shaded: SW / hot and gets the	e summer wind:	'Low', see above 'Ave or High'							
$KI = KS \times Kd \times Kmc$ $Etl = KI \times 138.2 mm/ mth$ (5. IE can be Drip, Sprinkler (Spra $TPWA (L) = area (m^2) \times (Etl / I)$ WATER COLLECTION (if a	y) or Efficient Flow Nozz IE)		to and region)					X					
		orm Water for Irrigation Pu					m³						
Cistern:	Smm Retention of Sto	orm water for irrigation Pu	rposes				m-	0.000					
DESIGN CASE													
Landscape	Area	Species Factor	Density Factor	Microclimate	Kl	Etl July	IE	TPWA	TPWA	TPWA	TPWA	TPWA	TPWA
Туре	m ²	Ks	Kd	Ктс			Drip (.9), Low flow (0.75), Spray (.625)	Average (liters)	May	June	July	August	Sept
Trees (Canopy Area)		0.5	1.0	0.5	0.250	34.550	0.625	0	0	0	0	0	0
Shrubs	10.0	0.4	1.1	1.3	0.572	79.050	0.625	1,001	930	1,143	1,265	1010	655
Perennials	20.0	0.3	1.1	1.3	0.429	59.288	0.625	1,501	1,395	1,715	1,897	1516	983
Mixed		0.2	1.3	0.5	0.130	17.966	0.625	0	0	0	0	0	0
											0	0	
Turfgrass		0.7	1.0	1.2	0.840	116.088	0.625	0	0	0	0	0	0
Turfgrass Sedum Mats	88.0		1.0 1.0	1.2 1.0	0.840 0.500	116.088 69.100	0.625 0.625	0 7,698	0 7,153	0 8,793	9,729	7772	0 5041
-	88.0 118.0	0.7				69.100		0	0	v	-	-	
Sedum Mats		0.7			0.500 Subtotal (L) per n	69.100 nonth	0.625	7,698 10,199	7,153 9,477	8,793 11,651	9,729 12,891	7772 10,298	5041 6,679
Sedum Mats Total m ² * Trees require 55 L		0.7			0.500 Subtotal (L) per n Net potable wate	69.100 nonth er (L) from Design Case	0.625 e per week	7,698 10,199 2,550	7,153 9,477 2,369	8,793 11,651 2,913	9,729 12,891 3,223	7772 10,298 2,575	5041 6,679 1,670
Sedum Mats Total m ² * Trees require 55 L per week or 220 L/ mth		0.7			0.500 Subtotal (L) per n Net potable wate	69.100 nonth	0.625 e per week	7,698 10,199	7,153 9,477	8,793 11,651	9,729 12,891	7772 10,298	5041 6,679
Sedum Mats Total m ² * Trees require 55 L		0.7			0.500 Subtotal (L) per n Net potable wate Irrigation water u	69.100 nonth er (L) from Design Case	0.625 e per week total/7days)*3days	7,698 10,199 2,550	7,153 9,477 2,369	8,793 11,651 2,913	9,729 12,891 3,223	7772 10,298 2,575	5041 6,679 1,670
Sedum Mats Total m ² * Trees require 55 L per week or 220 L/ mth		0.7			0.500 Subtotal (L) per n Net potable wate Irrigation water o 5mm Retention f	69.100 nonth er (L) from Design Cası use for 72 hours, (subt for Irrigation Purposes	0.625 e per week total/7days)*3days ; (see X above)	7,698 10,199 2,550	7,153 9,477 2,369 1,015 0	8,793 11,651 2,913	9,729 12,891 3,223	7772 10,298 2,575	5041 6,679 1,670 716

Appendix D Sanitary Analysis

Sanitary Service Design Calculations

17 Elm Street																		9	Sanitary	Sewer [Design Shee
Mixed use development NOTES: Post-development domestic sewage flow ba										flow of 240.0 L	pcd.										
		Maximum flow velocity for pipe flowing full = 3.0 m/s.																Project Name:		t	
IBI								e flowing partiall	y full (actual flo	w) = 0.6 m/s.							Pi	roject Number:			
						Infiltration=	0.26 L/s/ha												August 19, 20		
						Mannings=	0.013							Designed By: Jason Jenkins, P.Eng.				s, P.Eng.			
							DESIG	SN FLOW CAL	CULATIONS							SEW	ER DESIGN 8	ANALYSIS			
	From	То	Area (ha)	Density	Population	Cumulative Area (ha)	Cumulative Population	Peaking Factor	Sewage Flow	Infiltration Flow	Ground Water	Stormwater Flow	Total Flow, Qd	Nominal	Pipe	Pipe	Full Flow	Full Flow	Actual	Percent of	Notes
			(nu)			, and (ind)	ropulation	1 40101	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	Diameter	Slope	Length	Capacity,	Velocity	Velocity	Full Flow (%)	110100
									(1)	(2)	(3)	(4)	(1)+(2)+(3)+(4)	(mm)	(%)	(m)	Qf (L/s)	(m/s)	V (m/s)		
Pre-Development																					
			0.0793		9	0.0763	9		0.026	0.02	0.0	9.7	9.7			1			[
													•								
	L	<u> </u>		[[<u> </u>	[
Post-Development		rvices		-	-		-			-								-			
240 and 250 L/cap/day	Cntrl MH	200 San Sewer	0.0793		321	0.0763	321	4.07	3.62	0.020	0.0		3.6								
450L/cap/day			0.0793		321	0.0763	321	4.07	6.79	0.020	0.0		6.8	200	2.0%	21.5	48.4	1.49	1.05	14.1%	

Pre-Development											
	Units / Area	Density	Population								
Retail	737 m2	1.1 pp/100m2	8								
			0								
		Pop. =	9								

Post-Development	Units / Area	Density	Population
1 Bedroom	100	1.4 pp/unit	140
2 Bedroom	51	2.1 pp/unit	107
3 Bedroom	23	3.1 pp/unit	71
Retail	212 m2	1.1 pp/100m2	2
		Pop. =	321

Appendix E Water Analysis

Hydrant Flow Test (Elm Street) Water Demand and Fire Demand Calculations Fire Resistive Construction Confirmation Letter

HYDRANT FLOW TESTING

NOTE:Hydrants tested according to NFPA 291: Recommended Practice for Fire Flow Testing and Marking of Hydrants

GENERAL INFORMATION

General Information

Date of Testing	20-Jul-22
Project Number:	137680-task8
Site Location / Address:	17 Elm St
Region / Municipality	Toronto
Hydrants Opened By:	Toronto
Tested by:	Daniel S
	Val V

HYDRANT TEST INFORMATION

Hydrant Test Location - Residual Hydrant=R, Flow Hydrant=F (North at Top)

Test Data				
Time of Test Pipe Size (mm) Flow Hydrant Test Lo Residual Hydrant Tes Static Pressure(PSIG	st Location (descriptio	1:08 PM 150 13 Elm St 31 Elm St 61		
Q1 Test Data (1 Orif	ïce)			
# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
1	2.5	<5 psi	<375	36
QT Test Data (2 Orif	fices)			
# OUTLETS	ORIFICE SIZE(IN)	PITOT PRESSURE(PSIG)	FLOW(USGPM)	RESIDUAL PRESSURE(PSIG)
2	2.5	-	-	32
Calculations				
		Where: c- coeffi		
Q1 - 1 Orifice(s)			33)(0.9)(2.5)^2 √5<375	
QT - 2 Orifice(s) Static Pressure(PSIG		QT= - 61		
Additional Informatic				
Notes/ Comments			Low flow the test.	was observed during

17 Elm Street

Mixed-use development

DOMESTIC WATER DEMAND CALCULATIONS

Project Name: 17 Elm Street Project Number: 137680 Date: August 19, 2022 Designed By: Jason Jenkins, P.Eng.

			Peaking Factors			
1. Based on the City of Toronto Standards and 2. OBC, Part 8 "Sewage Systems", OBC Table 8.2.1.3.A and 8.2.1.3.B				Land Use	Peak Hour	Maximum Day
				Residential	2.50	1.30
3. ADD = 190 L/cap/day for residential uses			Commercial	1.20	1.10	
					(ADDxP.F.)	(ADDxP.F.)
	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
1 Bedroom	100 units	1.4 pp/unit	140	0.3	0.8	0.4

	Units / Area	Density	Population	ADD (L/s)	PHD (L/s)	MDD (L/s)
1 Bedroom	100 units	1.4 pp/unit	140	0.3	0.8	0.4
2 Bedroom	51 units	2.1 pp/unit	107	0.2	0.6	0.3
3 Bedroom	23 units	3.1 pp/unit	71	0.2	0.4	0.2
Retail	212 m2	1.1 pp/100m2	2	0.0	0.0	0.0
		Totals	321	0.7	1.8	0.9

17 Elm Street

Mixed-use development

IBI

FIRE FLOW DEMAND CALCULATIONS

Project Name: 17 Elm Street Project Number: 137680 Date: August 19, 2022 Designed By: Jason Jenkins, P.Eng.

Based on the Water Supply for Public Fire Protecetion Manual, 1999 by the Fire Underwriters Survey

Step 1: Calculate Fire Flow (based on area)				
Construction Coefficient = Largest Floor Area = Floor Above = Floor Below = Area = Fire Flow (F) = * If vertical openings are inadequately protected, consid * If vertical openings are adequately protected (one hour Step 2: Adjustment for Building Occupancy (sha	r rating), consider largest floor area	1.0 for ordinary construction 1.5 for wood frame construc A = total floor area excluding b floors plus 50% of each of any flo	tected, 3-hr ratings) . unprotected metal buildings tion asements 50% below grade	F = 220C√A
Occupancy Adjustment = F ₁ = Fire Flow x Adjustment =	-0.15 4,250 L/min	Non-Combust25%Limited Comb15%CombustableNo char	Rapid Burn	0
Step 3: Adjust F1 for Fire Supression System				
Sprinkler Adjustment = F ₂ = F ₁ x Adjustment =	30% 1,275 L/min	Automatic Sprinklers (m Adequatly Designed	,	
Step 4: Adjust F1 for Exposure / Proximity (shal	I not exceed 75%)			
Proximity Adjustment = F ₃ = F ₁ x Factor =	75% (max 75%) 3,188 L/min	Separation Adjustm 0m to 3m 25% 3.1m to 10m 20% 10.1m to 20m 15%	20.1m to 30m 30.1m to 45m	Adjustment 10% 5%
Step 5: Calculate Adjusted Fire Flow (shall not I	be less than 2000 L/min or grea	ater than 45,000 L/min)		
F ₁ = - F ₂ = + F3 = Fire Flow = Fire Flow = Total Demand (Fire Flow + MDD) =	4,250 L/min 1,275 L/min 3,188 L/min 6,000 L/min 100.0 L/s 100.9 L/s		Fire Flow Checks: Fire Flow greater th Fire Flow less than	

17 Elm Street - Fire Restrictive Criteria Confirmation Letter

Project:

17 Elm Street

Date: August 9th, 2022 **# of Pages:** 01

To whom it may concern,

Please be advised that the above-referenced building will be constructed in compliance with the 2015 Ontario Building Code (OBC), and equipped with a Fire Protection System conforming to the NFPA 13 Standards for Installation of Sprinkler Systems and specifically:

- 1. All structural members and floors will be of fire resistive construction per the Fire Underwriters Survey (FUS) 1999 with 2-hour ratings per the OBC.
- 2. All vertical openings and exterior vertical communications will be constructed with a 1-hour fire rating.

Thank you,

Alex Josephson Partner, PARTISANS